满意度:
销量: 0
评论: 0 次
成果简介:
本发明涉及一种基于分布式A‑C的智能接入控制与资源分配方法,属于通信技术领域。该方法中,根据eMBB和URLLC切片的性能需求,构建了一个联合eMBB切片用户传输速率和URLLC切片用户时延的双目标优化模型。其次,将联邦学习与强化学习融合,建立一个联邦强化学习框架,各个智能体协作,以更新全局权重参数,且各个智能体本地数据不相互交换。联邦强化学习框架中的智能体利用A‑C学习不断与环境进行交互,各个智能体间相互协作,动态调整接入控制与资源分配策略,优化系统模型。本发明所提能够满足各切片用户性能需求且维持各切片用户队列处于稳定状态,优化eMBB用户传输速率和URLLC用户时延,提高资源利用率。